冷库氨管道无损检测策略建议 任何一项无损检测技术的生命力都在于其有着有别于其它技术的特殊性
射线探伤常用的污水处理厂管道无损检测方法及优缺点:1、超声波检测超声波检测方法是将高频超声波射入被检测管道内,若管道内部存在缺陷,则超声波到缺陷处被反射回来,从而利用传感器接收到的超声波反射信号检测出缺陷的位置和大小一般利用超声波的脉冲反射原理来测量管壁的减薄状况。超声检测的优点主要包括对管道材料的敏感性低,可识别缺陷的深度,不受管道材料杂质的影响,且检测数据简单准确,检测成本低。但应用超声检测需要耦合剂不易实现无接触测量,对不锈钢弯头管道表面要求高,不易识别缺陷的类型,不适合在含蜡高的油管进行检测具有局限性。2、漏磁检测漏磁检测是用于探测铁磁性材料内部缺陷的一种可靠的手段。检测时先将被测管道磁化,在被测管道内部产生磁场,若管壁内有缺陷,由于缺陷处的磁阻远大于铁磁材料的磁阻,所以在缺陷处磁力线发生弯曲现象,由此可以判定缺陷的存在。漏磁检测方法的主要优点为:不需耦合,检测灵敏度高,可靠性强,可对缺陷进行量化分析,且检测速度快,易于实现自动化。其缺点是:只适用于铁磁性材料,不能检测非金属管道,难以判断缺陷在管壁的内表面还是外表面。且退磁困难,易带来磁污染。3、激光检测激光法是利用激光原理开发出来的腐蚀检测技术。激光射向管道后,会返回到一个光敏传感器上,传感器可以显示出管道内的腐蚀坑和其它表面缺陷,然后利用分析算法得出被测管道的初始表面值,再计算出缺陷的。
厦门压力管道无损检测公司因为缺陷识别系统和评片系统目前已取得比较理想的结果,故射线底片的智能化评片系统的难点是图象处理,而解决图象处理这一难题的关键是解决底片上影象的采集问题 (3)用于薄壁小径管焊缝探伤的相控阵列换能器的超声检测技术研究 将一组换能器绕在焊缝的一周,换能器不动,通过相控在短时间内一次性取得信息,从而完成一个焊口的检测工作。 火电厂无损检测 1.2电磁超声技术 常规的超声波探伤和测厚给无损检测工作者带来的不便就是需对探伤对象的表面进行处理,使其达到一定的表面粗糙度。电磁超声波探伤与常规方法相比无需机械和液体耦合,进行锅炉管道检测时对沾染或结渣轻微的表面无需进行处理,大大减少了辅助性工作量。 从物理学可知,在交变的磁场中,金属导体内将产生涡流,同时该电流在磁场中会受到力的作用,金属介质在交变应力的作用下将会产生机械波。当交变磁场的效率达到某一范围时就会产生超声波,与此相反,此效应呈现可逆性。人们把用这种方法激发和接收的超声波称为电磁超声。 目前,电磁超声换能器可以象传统的压电晶片换能器一样在金属件中产生纵波、横波、斜声束以及聚焦声束,可同常规的超声波探伤一样来检查工作中的缺陷。这种换能器所具有的缺陷检出能力和信噪比能够与以往的压电陶瓷换能器相媲美。电力工业部已将电磁超声技术研究列入火力发电厂金属材料10年科技发展规划(草案)之中。美国材料工程协会为美国电力研究所研制的电磁超声测厚装置可测厚达1mm,准确度为0.05mm。
厦门压力管道无损检测如果管道防腐层有破损信号将从破损处溢出管道并在该处周围土壤中产生较强的磁场信号当检测人员手持带有选频放大器的接收机在管道正上方行走时接收机将对这一明显的溢出信号产生报警显示检测人员可根据音频报警和电流信号的大小确定管道防腐层破损的位置。使用该方法对管道防腐层检漏与检测人员的经验关系很大有经验的检测者几乎可测到所有的埋地管道防腐层缺陷并可判断其缺陷的程度而缺乏经验者则往往不能得出正确的结论。该方法的缺点是极易受干扰不适用于复杂的地理环境而且必须全线行走检查一般情况下只能定性不能定量。该法较适于长距离埋地管道的定期检测。在新管道铺设的质量管理程序中它作为维护管道防腐层完整无损的前提条件被写入了新管道防腐层施工质量验收的前提条件。通过现场应用表明该种仪器检测深度gt,5mpearson(sl22098)和交流电流衰减法(rd4002pcm+a字架)定出的破损点位置和破损点大小基本吻合适合于城市埋地钢质管道破损点的检测具有较强的破损点定位能力与精度。2.3电化学暂态检测技术埋地管道防腐层缺陷包括防腐层破损和防腐层剥离两种情况。对于埋地管道防腐层缺陷检测上述方法只能适用于防腐层的破损检测不能检测管线涂层剥离的情况。近两年人们。
船舶无损检测 (3)常规射线检测 采用常规射线方法检测冷库氨制冷压力管道,不需要打磨,但仍需要拆除保温层,露出管体之后,检测人员方可对原始状态管道的对接环焊缝实施检测,而且管道内的液体介质必须排除干净 液氨管道作为冷库制冷系统的重要组成部分,具有非常高的焊缝质量要求,而常规射线检测底片影像质量因环境及人为因素的影响,清晰度、黑度和对比度较差,难免会造成缺陷的错评或漏评。同时,液氨管道长期处于较为复杂的工况中,常规射线检测无法满足液氨管道全面检验对焊缝缺陷检出率的要求。 (4)磁粉检测 磁粉检测是利用磁现象检测铁磁材料表面近表面缺陷的方法。它具有显示直观、灵敏度高,实用性好及工艺简单、成本低、效率高的优点,不足之处是仅适用于铁磁性材料,缺陷深度的定量比较困难,并且要求管道处于一种适宜的待检状态,包括保温层拆除、升温处理、适宜的表面粗糙度等。 无损检测新技术 (1)X射线数字成像检测 X射线数字化实时成像无损检测系统构成 X射线数字化实时成像检测技术在天然气长输管道焊缝检测中已经得到了广泛的应用,并在实际检测中取得了非常好的效果。对比传统的X射线检测技术,管道环焊缝的数字X射线检测技术具有以下优点: 1、应用了图像处理技术,补片量减少。图像后处理技术使数字化的成像质量大大提高,经过计算机分析和处理,运用边缘增强或者平滑技术,把没有经过处理的影像当中看不到的一些特征信息显示到荧屏上,进而能够让图像显示更加清晰。 2、应用了计算机的存储技术,使存储的成本降低,提高了无损检测的管理水平及效率。 3、无胶片化且减少了环境污染。 4、能够实现远程评片,有效降低人为因素带来的影响,评片结果更为公正和客观。
海固工程无损检测服务公司对奥氏体不锈钢管道对接焊缝典型缺陷进行超声波检测,是压力管道无损检测的必要手段,对保障奥氏体不锈钢压力管道安全运行具有十分重要的意义与常规的射线检测相比,超声检测除可确定缺陷的埋藏位置,估计缺陷的自身高度,为安全评定提供必要的检测数据外;超声波检测还具有没有放射性危害,作业时间不受限制,便于高空作业,检测效率高等优势,还可直接降低检测成本超过60%。。
4、能够实现远程评片,有效降低人为因素带来的影响,评片结果更为公正和客观 (2)脉冲涡流检测 脉冲涡流工作原理图 脉冲涡流检测技术适合于外保温层为非铁磁性材料、绝缘层150mm以下的管道;适合于管道壁厚65mm以下、介质输送温度低于450℃的管道,液氨管道无论从材质、保温层厚度、管道壁厚及介质温度等,都满足脉冲涡流检测的条件。 脉冲涡流检测技术的优点在于不需要对管道直管段及管件(弯头、三通、直径突变处)进行保温层拆除,节省了人力和时间,解决了企业大检修时间紧、检修任务重的问题,同时,脉冲涡流检测还可以实现管道的在线检测。 冷库氨管道无损检测策略建议 任何一项无损检测技术的生命力都在于其有着有别于其它技术的特殊性,同时每一项无损检测技术又都存在各自的局限性,针对冷库氨制冷管道全面检验的特殊性以及以往的检测经验,提出以下两种建议: (1)脉冲涡流检测不仅可以在不去除保护层和隔热层状态下,实现对管道壁厚的测量,而且更适用于表面下深层裂纹的定量检测。在实际应用中,可根据不同深度人工缺陷的响应数据绘制出深度与感应磁场出现时间的对应曲线;测出缺陷响应信号出现的时间后,对应到参考曲线上就可以确定缺陷的深度。因此,在对检测条件要求苛刻的氨制冷管道检测中,脉冲涡流检测技术是比较合适的选择。 (2)在不停机状态下,冷库氨制冷压力管道焊缝无损检测、焊接缺陷及管道剩余壁厚的测定,也可采用红外线热成像和X射线数字成像技术相互配合的方式来进行。 在对管道剩余壁厚的抽查检测过程中,测厚部位的选择非常关键。液氨管道的内壁几乎没有腐蚀,腐蚀主要来源于外表面,外表面腐蚀导致管道保温层破损或脱落后会造成管道跑冷。因此,可以通过红外线成像技术检测管道保温层是否存在破损,进而找到管道腐蚀检测的重点部位,再结合X射线数字成像技术对缺陷进行定量分析和判断。 本文部分图片来源于网络 节选自《无损检测》2016年第38卷第10期 本文作者:崔闯。
那么为什么需要按时对压力管道无损检测呢?其实这也不难理解,因为压力管道其内部输送的介质是气体、液化气体和蒸汽或可能引起燃爆、中毒或腐蚀的液体,物质。如果发生泄漏问题,那么会对现场的工作人员造成不可挽回的伤害,或造成工作被迫暂停。这么看来压力管道探伤检测还是非常有必要的!。