那么为什么需要按时对压力管道无损检测呢?其实这也不难理解,因为压力管道其内部输送的介质是气体、液化气体和蒸汽
土壤检测对比传统的X射线检测技术,管道环焊缝的数字X射线检测技术具有以下优点: 1、应用了图像处理技术,补片量减少图像后处理技术使数字化的成像质量大大提高,经过计算机分析和处理,运用边缘增强或者平滑技术,把没有经过处理的影像当中看不到的一些特征信息显示到荧屏上,进而能够让图像显示更加清晰。 2、应用了计算机的存储技术,使存储的成本降低,提高了无损检测的管理水平及效率。 3、无胶片化且减少了环境污染。 4、能够实现远程评片,有效降低人为因素带来的影响,评片结果更为公正和客观。 (2)脉冲涡流检测 脉冲涡流工作原理图 脉冲涡流检测技术适合于外保温层为非铁磁性材料、绝缘层150mm以下的管道;适合于管道壁厚65mm以下、介质输送温度低于450℃的管道,液氨管道无论从材质、保温层厚度、管道壁厚及介质温度等,都满足脉冲涡流检测的条件。 脉冲涡流检测技术的优点在于不需要对管道直管段及管件(弯头、三通、直径突变处)进行保温层拆除,节省了人力和时间,解决了企业大检修时间紧、检修任务重的问题,同时,脉冲涡流检测还可以实现管道的在线检测。 冷库氨管道无损检测策略建议 任何一项无损检测技术的生命力都在于其有着有别于其它技术的特殊性,同时每一项无损检测技术又都存在各自的局限性,针对冷库氨制冷管道全面检验的特殊性以及以往的检测经验,提出以下两种建议: (1)脉冲涡流检测不仅可以在不去除保护层和隔热层状态下,实现对管道壁厚的测量,而且更适用于表面下深层裂纹的定量检测。在实际应用中,可根据不同深度人工缺陷的响应数据绘制出深度与感应磁场出现时间的对应曲线;测出缺陷响应信号出现的时间后,对应到参考曲线上就可以确定缺陷的深度。因此,在对检测条件要求苛刻的氨制冷管道检测中,脉冲涡流检测技术是比较合适的选择。 (2)在不停机状态下,冷库氨制冷压力管道焊缝无损检测、焊接缺陷及管道剩余壁厚的测定,也可采用红外线热成像和X射线数字成像技术相互配合的方式来进行。
管道防腐不锈钢管外径小于159mm,壁厚4~14mm的奥氏体不锈钢管主要是用于加工承压设备环向焊接接头,这种设备大量应用在化工设备受热承压,气液输送过程中,国际和国内对于小口径薄壁奧氏体不锈钢管对接焊缝质量的超声波检测没有专口的标准和规范,实际检测时主要采用和借鉴碳钢管道的无损检测工艺或各式各样的企业检测规程;而在大口径厚壁奥氏体不锈钢管焊缝质量的超声波无损检测工苦及实施方面国内各行业也各不相同,普遍水平较低,检测效果较差送对于开展承足类特种设备中奧氏体不锈钢管焊接的检验检测工作十分不利。小口径奥氏体不锈钢管焊缝的组织不均匀、薄壁、大曲率等特点,使其超声波检测成为一项技术性难题,迄今还没有一种有效的超声波检测方法。对于在承压类特种设备中应用非常广泛的奧氏体不锈钢管焊缝的检测,需研究出有针对性的超声波检测方法与工艺,提高对管道焊缝的典型缺陷的检出率和检测正确率,大幅度提高检测效率,降低检测成本。对奥氏体不锈钢管道对接焊缝典型缺陷进行超声波检测,是压力管道无损检测的必要手段,对保障奥氏体不锈钢压力管道安全运行具有十分重要的意义。与常规的射线检测相比,超声检测除可确定缺陷的埋藏位置,估计缺陷的自身高度,为安全评定提供必要的检测数据外;超声波检测还具有没有放射性危害,作业时间不受限制,便于高空作业,检测效率高等优势,还可直接降低检测成本超过60%。。
艉轴探伤而特种设备按照《中华人民共和国特种设备安全法》都是需要按时检测检验的而压力管道最好是找管道检测单位进行每年的年检,还要进行3至6年一次的法定检查。那么为什么需要按时对压力管道无损检测呢?其实这也不难理解,因为压力管道其内部输送的介质是气体、液化气体和蒸汽。或可能引起燃爆、中毒或腐蚀的液体,物质。如果发生泄漏问题,那么会对现场的工作人员造成不可挽回的伤害,或造成工作被迫暂停。这么看来压力管道探伤检测还是非常有必要的!。
着色探伤人们把用这种方法激发和接收的超声波称为电磁超声 目前,电磁超声换能器可以象传统的压电晶片换能器一样在金属件中产生纵波、横波、斜声束以及聚焦声束,可同常规的超声波探伤一样来检查工作中的缺陷。这种换能器所具有的缺陷检出能力和信噪比能够与以往的压电陶瓷换能器相媲美。电力工业部已将电磁超声技术研究列入火力发电厂金属材料10年科技发展规划(草案)之中。美国材料工程协会为美国电力研究所研制的电磁超声测厚装置可测厚达1mm,准确度为0.05mm。 1.3蒸气管道超声波检漏技术 蒸气管道爆管前若能及时采取措施就可能消除爆管引起的潜在威胁。在无损检测技术发展的今天,这一设想已成为现实。 蒸汽管损坏前的开始阶段总是伴有耳听不到的微小泄漏声。这种泄漏随时间的延续呈指数增长,一旦等到人耳可以听到泄漏声时,泄漏速度已经很大,这时欲采取措施可能已经来不及了。研究表明,蒸气微小泄漏发出的声波是宽频带的,包括人耳听不到的次声波和超声波,其中的音频信号因发电厂环境中的低频机械噪声较强而人耳听不到。然而采用超声波接收装置,则在爆管前8~10h就可以接收到微小泄漏声波中的超声波分量。
塑料检测该仪器引导检测人员接近埋地管线定位出平面和深度的位置利用内置的gps系统存储每一个测量点的位置数据采集大量的信号读数并以字母数字或者图表显示数据数据包括地图和管线深度轮廓、每一段管线防腐层的状况及涂敷层电导率(mu,s/m2)曲线并且一段接一段地进行巡检。在ldquo,近间距模式下c2scan将显示某个防腐层缺陷的位置和相对严重程度以便必要时开挖和修复。所测量的数据是绝对的所以可以对同一管线不同时期的检测结果进行比较以显示腐蚀随时间的变化情况。所有的测量数据可存储在仪器内并可随时显示。通过使用c2scan配套的专门处理软件可以直接将数据传输给计算机用于打印和将来的分析处理。2.1.2多频管中电流检测技术(pcm)[23]多频管中电流法是一项检测埋地管道防腐层漏电状况的技态是以管中电流梯度测试法为基础的改进型防腐层检测方法基本原理是将发射机信号线的一端与管道连接另一端与大地连接由pcm大功率发射机向管道发送近似直流的4hz电流和128hz/640hz定位电流便携式接收机能准确地探测到经管道传送的这种特殊信号跟踪和采集该信号输入到微机便能测绘出管道上各处的电流强度。通过分析电流变化可对管道防腐层的绝缘性进行评估。图2为pcm埋地管道外防腐层状态检测仪包括发射机、接收机和a字架。电流强度随着管道距离的增加而衰减在管径、管材和土壤环境不变的情况下管道防腐层对地绝缘越好电流衰减越小。如果管道防腐层损坏如老化和脱落绝缘性越差管道上电流损失就越严重衰减就越大。
超声测厚对于管道的温度、表面状况等具有较高的要求,而氨管道要达到这种状态,需要消耗大量的时间、人力和物力所以采用常规超声测厚进行氨管道检测,不仅缺陷检出率较低,而且会影响企业检修管道的进度。 (3)常规射线检测 采用常规射线方法检测冷库氨制冷压力管道,不需要打磨,但仍需要拆除保温层,露出管体之后,检测人员方可对原始状态管道的对接环焊缝实施检测,而且管道内的液体介质必须排除干净。 液氨管道作为冷库制冷系统的重要组成部分,具有非常高的焊缝质量要求,而常规射线检测底片影像质量因环境及人为因素的影响,清晰度、黑度和对比度较差,难免会造成缺陷的错评或漏评。同时,液氨管道长期处于较为复杂的工况中,常规射线检测无法满足液氨管道全面检验对焊缝缺陷检出率的要求。 (4)磁粉检测 磁粉检测是利用磁现象检测铁磁材料表面近表面缺陷的方法。它具有显示直观、灵敏度高,实用性好及工艺简单、成本低、效率高的优点,不足之处是仅适用于铁磁性材料,缺陷深度的定量比较困难,并且要求管道处于一种适宜的待检状态,包括保温层拆除、升温处理、适宜的表面粗糙度等。 无损检测新技术 (1)X射线数字成像检测 X射线数字化实时成像无损检测系统构成 X射线数字化实时成像检测技术在天然气长输管道焊缝检测中已经得到了广泛的应用,并在实际检测中取得了非常好的效果。对比传统的X射线检测技术,管道环焊缝的数字X射线检测技术具有以下优点: 1、应用了图像处理技术,补片量减少。图像后处理技术使数字化的成像质量大大提高,经过计算机分析和处理,运用边缘增强或者平滑技术,把没有经过处理的影像当中看不到的一些特征信息显示到荧屏上,进而能够让图像显示更加清晰。 2、应用了计算机的存储技术,使存储的成本降低,提高了无损检测的管理水平及效率。
其缺点是:只适用于铁磁性材料,不能检测非金属管道,难以判断缺陷在管壁的内表面还是外表面且退磁困难,易带来磁污染。3、激光检测激光法是利用激光原理开发出来的腐蚀检测技术。激光射向管道后,会返回到一个光敏传感器上,传感器可以显示出管道内的腐蚀坑和其它表面缺陷,然后利用分析算法得出被测管道的初始表面值,再计算出缺陷的。激光法检测属于非接触式检测,与接触式检测技术相比具有限制少、效率高、不损伤被测工件表面和不易受被测工件表面状态影响等优点,此外激光法扫描速度快,可以将所有的检测数据编成目录索引便于进行进一步的风险评估。但激光法需要其它检测方法的配合才能得出的数据,这一缺点大大限制了激光检测法的发展。4、射线检测射线检测技术是利用成像物体的变动图像迅速改变的电子学成像方法。利用射线检测管道可以测量管壁的腐蚀,通过照片上的尺寸计量扩大为实际缺陷种类,大小,发布状况。缺点是因为利用射线检测法只能检测管道截面部位的厚度,不能检测截面以外的平面部位的厚度,且射线在管道内壁容易发生散射,不易控制,且对人体有害。以上方法就是污水处理厂管道无损检测最常用的几种检测方法。。