随着火力发电厂机组延长寿命工作的开展,锅炉管道无损检测(包括在线监测)在确保热力设备安全经济运行方面将起着越来越重要的作用
厦门钢结构无损检测哪家好其缺点是:只适用于铁磁性材料,不能检测非金属管道,难以判断缺陷在管壁的内表面还是外表面且退磁困难,易带来磁污染。3、激光检测激光法是利用激光原理开发出来的腐蚀检测技术。激光射向管道后,会返回到一个光敏传感器上,传感器可以显示出管道内的腐蚀坑和其它表面缺陷,然后利用分析算法得出被测管道的初始表面值,再计算出缺陷的。激光法检测属于非接触式检测,与接触式检测技术相比具有限制少、效率高、不损伤被测工件表面和不易受被测工件表面状态影响等优点,此外激光法扫描速度快,可以将所有的检测数据编成目录索引便于进行进一步的风险评估。但激光法需要其它检测方法的配合才能得出的数据,这一缺点大大限制了激光检测法的发展。4、射线检测射线检测技术是利用成像物体的变动图像迅速改变的电子学成像方法。利用射线检测管道可以测量管壁的腐蚀,通过照片上的尺寸计量扩大为实际缺陷种类,大小,发布状况。缺点是因为利用射线检测法只能检测管道截面部位的厚度,不能检测截面以外的平面部位的厚度,且射线在管道内壁容易发生散射,不易控制,且对人体有害。以上方法就是污水处理厂管道无损检测最常用的几种检测方法。。
焊接加工绝缘子焊接技术而压力管道最好是找管道检测单位进行每年的年检,还要进行3至6年一次的法定检查那么为什么需要按时对压力管道无损检测呢?其实这也不难理解,因为压力管道其内部输送的介质是气体、液化气体和蒸汽。或可能引起燃爆、中毒或腐蚀的液体,物质。如果发生泄漏问题,那么会对现场的工作人员造成不可挽回的伤害,或造成工作被迫暂停。这么看来压力管道探伤检测还是非常有必要的!。
厦门无损检测服务因此,可以通过红外线成像技术检测管道保温层是否存在破损,进而找到管道腐蚀检测的重点部位,再结合X射线数字成像技术对缺陷进行定量分析和判断 本文部分图片来源于网络 节选自《无损检测》2016年第38卷第10期 本文作者:崔闯。
厦门焊接工艺评定机构1埋地管道敷设环境调查城市燃气钢质管道基本上采用埋地敷设方式其主要的腐蚀是化学腐蚀与电化学腐蚀因而对管道经过地区的土壤环境调查是考察管道安全状况的重要因素也是进行埋地钢质管道外覆盖层安全质量状况须考虑的因素。目前埋地钢质管道经过土壤腐蚀性能和杂散电流情况的调查按照国内现行国家与行业有关规范的要求土壤电阻率与杂散电流是反映土壤腐蚀性的重要因素。通常采用winner四极法与杂散电流测试仪(scm)来进行测试并对其进行分级。杂散电流测试仪见图1它是检测杂散电流的安全和高效的设备。2埋地钢质管道外覆盖层的检测技术2.1交流电流衰减检测技术[23]交流电衰减检测用于总体评价管道外覆盖层并确定外覆盖层破损点。当电流施加在管道上时根据电流衰减变化的大小探测外覆盖层绝缘电阻和破损点还能提供其它信息包括管道埋深、分支位置、搭接面积和电导系数等也能区别单个异常点与连续的外覆盖层破损区域。交流电衰减法适用于能传递电磁信号的任何覆土层下的金属管道如冰、水及混凝土等但需要管道连接点。以电流衰减率为原理开发的仪器主要有英国radiodetection公司开发的rd4002pcm和dynalog公司生产的c2scan系列仪器。rd4002pcm的4hz频率和c2scan的973.5hz频率得到了nacerp050222002《管道外壁腐蚀直接评价方法的推荐做法》标准的推荐。c2scan仪器带有测量检测间距的全球卫星定位系统(gps)能标志破损点位置。
着色渗透探伤超声波检漏技术是由意大利、法国和英国的电力工业部门在70年代开发的,目前,在美国已广泛地用于在役锅炉管道的检漏据美国1986年对参加检漏试验的有关电厂的统计表明:在24次锅炉管道泄漏事故中,有50%由声学检漏系统作出了早期警报,据分析,探测率低是由于在事故发生时有些声检漏探测系统还没有全部投入运行。我国目前已经开始了此方面技术的开发与研究工作。 2结语 无损检测锅炉管道的常规方法及超声波法、射线透照法,无疑在目前及将来都是主要的检测手段。然而,从安全性、经济性观点看,还应向具有下述特征的先进无损检测手段的方向发展: (1)尽可能减少人为因素,朝着自动化和智能化的方向发展, (2)能够准确迅速地检测锅炉管壁厚度,管内结垢厚度,氧化皮厚度以及腐蚀磨损、疲劳和高温引起的材质损伤情况, (3)尽可能减少辅助性工作,不妨碍正常的检修工作, (4)实现机组运行过程中的在线检测和评价等。 随着火力发电厂机组延长寿命工作的开展,锅炉管道无损检测(包括在线监测)在确保热力设备安全经济运行方面将起着越来越重要的作用。面对二十一世纪,广大电力系统的无损检测工作者,除了开展常规的无损检测工作之外,还应积极研究、开发和推广无损检测新技术,朝着提高准确性和检测效率,扩大检测范围的方面努力。关键词:火电厂无损检测,火力发电厂。
(2)脉冲涡流检测 脉冲涡流工作原理图 脉冲涡流检测技术适合于外保温层为非铁磁性材料、绝缘层150mm以下的管道;适合于管道壁厚65mm以下、介质输送温度低于450℃的管道,液氨管道无论从材质、保温层厚度、管道壁厚及介质温度等,都满足脉冲涡流检测的条件 脉冲涡流检测技术的优点在于不需要对管道直管段及管件(弯头、三通、直径突变处)进行保温层拆除,节省了人力和时间,解决了企业大检修时间紧、检修任务重的问题,同时,脉冲涡流检测还可以实现管道的在线检测。 冷库氨管道无损检测策略建议 任何一项无损检测技术的生命力都在于其有着有别于其它技术的特殊性,同时每一项无损检测技术又都存在各自的局限性,针对冷库氨制冷管道全面检验的特殊性以及以往的检测经验,提出以下两种建议: (1)脉冲涡流检测不仅可以在不去除保护层和隔热层状态下,实现对管道壁厚的测量,而且更适用于表面下深层裂纹的定量检测。在实际应用中,可根据不同深度人工缺陷的响应数据绘制出深度与感应磁场出现时间的对应曲线;测出缺陷响应信号出现的时间后,对应到参考曲线上就可以确定缺陷的深度。因此,在对检测条件要求苛刻的氨制冷管道检测中,脉冲涡流检测技术是比较合适的选择。 (2)在不停机状态下,冷库氨制冷压力管道焊缝无损检测、焊接缺陷及管道剩余壁厚的测定,也可采用红外线热成像和X射线数字成像技术相互配合的方式来进行。 在对管道剩余壁厚的抽查检测过程中,测厚部位的选择非常关键。液氨管道的内壁几乎没有腐蚀,腐蚀主要来源于外表面,外表面腐蚀导致管道保温层破损或脱落后会造成管道跑冷。因此,可以通过红外线成像技术检测管道保温层是否存在破损,进而找到管道腐蚀检测的重点部位,再结合X射线数字成像技术对缺陷进行定量分析和判断。 本文部分图片来源于网络 节选自《无损检测》2016年第38卷第10期 本文作者:崔闯。
与常规的射线检测相比,超声检测除可确定缺陷的埋藏位置,估计缺陷的自身高度,为安全评定提供必要的检测数据外;超声波检测还具有没有放射性危害,作业时间不受限制,便于高空作业,检测效率高等优势,还可直接降低检测成本超过60%。